Brushless Motors vs Brush Motors, what’s the difference?

What’s the difference between a Brushless Motor and a Brush Motor?

Well, the brushes of course.

Yeah, but what does that mean?

The principle behind the internal working of both a brushless DC motor and a brushed DC motor are essentially the same.  When the motor windings become energized, a temporary magnetic field is created that repels(and/or attracts) against permanent magnets.  This force is converted into shaft rotation, which allows the motor to do work.  As the shaft rotates, electric current is routed to different sets of windings, maintaining electromotive repulsion/attraction,  forcing the rotor to continually turn.

Construction differences

Brushes inside  electric motors are used to deliver current to the motor windings through commutator contacts.  Brushless motors have none of these current carrying commutators.  The field inside a brushless  motor is switched via an amplifier triggered by a commutating device, such as an optical encoder.

Windings are on the rotor (Rotating part of motor) for brush motors and on the stator (stationary part of motor) for brushless motors.

Brush Motor: windings on rotor, magnets on stator

Read more of this post

Advertisements

Finding the Index on an Incremental Encoder with a DMM

Sometimes you don’t have the right tools to do the job.

Lets say you needed to identify where the index pulse was firing on your incremental encoder, but you left your oscilloscope in your other jacket pocket, and now all you have on hand is a DMM.

Well fear not, finding the index with a multimeter is possible although a bit tedious.

The index fires once per revolution and at higher line counts this makes it VERY easy to miss.  Since there is some delay in a multimeter’s display time, you will need to rotate the encoder very slowly to catch a change in voltage level.

The Blue box has a nine-volt battery inside that I regulated down to 5Vdc for the encoder power.  I have pulled out connections to ground (Black wire) and the index channel (Orange wire). When the index fires, the voltage will go from zero to five volts.

Jim is an Applications Engineer with Quantum Devices Inc. A leading manufacturer of Optical Encoders.

Quantum Devices Optical Encoder Black/White Wire

What’s with this black-white wire?

Quantum devices QD145 and QD200 Optical Encoders feature an extra black & white-stripped wire that serves as an alternate grounding connection for the encoder.

This wire is intended to be used in situations where the encoder flex mount is not case grounded.  The Black/white wire is at the same potential as the Optical Encoder’s conductive polymer housing and  flex mount.

Internally the electrical path of the black-white wire is tied to the optical encoder housing and flex mount through the circuit board.  Our optical encoders tend to live on the back of hardware like Brushless DC motors, where the motor housing is at ground potential.  In cases like this it is usually best to leave the black-white wire tied off and floating.

Arrow showing flex mount grounding Optical Encoder to Motor.

Jim is an application engineer for Quantum Devices INC, a leading manufacturer of optical encoders.

Jim reached at jmiller@quantumdev.com.